Coexistence of Centers and Limit Cycles in Polynomial Systems
نویسندگان
چکیده
منابع مشابه
Limit Cycles Bifurcating from Planar Polynomial Quasi–homogeneous Centers
In this paper we find an upper bound for the maximum number of limit cycles bifurcating from the periodic orbits of any planar polynomial quasi-homogeneous center, which can be obtained using first order averaging method. This result improves the upper bounds given in [7].
متن کاملCenters and limit cycles of polynomial differential systems of degree 4 via averaging theory
In this paper we classify the phase portraits in the Poincaré disc of the centers of the generalized class of Kukles systems ẋ = −y, ẏ = x+ axy + bxy, symmetric with respect to the y-axis, and we study, using the averaging theory up to sixth order, the limit cycles which bifurcate from the periodic solutions of these centers when we perturb them inside the class of all polynomial differential s...
متن کاملIntegrability, degenerate centers, and limit cycles for a class of polynomial differential systems
We consider the class of polynomial differential equations ẋ = Pn(x, y)+Pn+1(x, y) +Pn+2(x, y), ẏ = Qn(x, y)+Qn+1(x, y)+Qn+2(x, y), for n ≥ 1 and where Pi and Qi are homogeneous polynomials of degree i. These systems have a linearly zero singular point at the origin if n ≥ 2. Inside this class we identify a new subclass of Darboux integrable systems, and some of them having a degenerate center,...
متن کاملLimit Cycles for a Generalized Kukles Polynomial Differential Systems
We study the limit cycles of a generalized Kukles polynomial differential systems using the averaging theory of first and second order.
متن کاملCoexistence of algebraic and non – algebraic limit cycles , explicitly given . ∗
We give a family of planar polynomial differential systems whose limit cycles can be explicitly described using polar coordinates. Moreover, we characterize the multiplicity of each one of the limit cycles whenever they exist. The given family of planar polynomial differential systems can have at most two limit cycles, counted with multiplicity. As an application of this result we give an examp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2000
ISSN: 0035-7596
DOI: 10.1216/rmjm/1022009285